We claim:

1. A composition comprising a metallic surface and an asymmetric monolayer forming species having the formula:

10 wherein

5

25

A is an attachment linker moiety selected from the group comprising sulfur and phosphonate; MFS is a monolayer forming species comprising conductive oligomers and insulators; and AG is an electroconduit forming species.

- 2. A composition according to claim 1 wherein A is sulfur.
- 3. A composition according to claim 1 wherein said metallic surface is gold.
- 4. A composition according to claim 1 wherein said MFS is an insulator.
- 5. A composition according to claim 4 wherein said insulator comprises an alkyl group from about 7 to 20 carbons.
- 6. A composition according to claim 5 wherein said alkyl group comprises a heteroalkyl.
- 7. A composition according to claim 5 wherein said alkyl group comprises a substituted alkyl.
- 8. A composition according to claim 1 wherein said AG comprises an alkyl group from about 1 to 6 carbons.
- 9. A composition according to claim 1 or 8 wherein said AG is branched, having the formula:

wherein

35

30

30

R₃ through R₅ are independently selected from the group consisting of hydrogen, alkyl, aryl, alcohol, amine, amido, nitro, ether, ester, ketone, imino, aldehyde, alkoxy, carbonyl, halogen, sulfur containing moiety and phosphorus containing moiety;

- 5 10. A composition according to claim 9 wherein said AG is attached to said attachment linker via a (CH₂)_n group, wherein n is an integer from 0 to 4.
 - 11. A composition according to claim 9 wherein said AG is attached directly to said attachment linker.
- 10 12. A method of modifying a metallic surface comprising contacting the metallic surface with an asymmetric monolayer forming species having the formula:

wherein

A is an attachment linker moiety;

MFS is a monlayer forming species; and

AG is an electroconduit forming species.

13. A method according to claim 12 further comprising contacting said metallic surface with a biological species having the formula:

A-MFS-capture binding ligand

wherein

A is an attachment linker; and

MFS is a monolayer forming species.

- 14. A method according to claim 13 wherein said capture binding ligand is a nucleic acid.
- 15. A method according to claim 13 wherein said capture binding ligand is a n protein.
- 35 16. A method according to claim 12 wherein A is sulfur.
 - 17. A method according to claim 12 wherein said metallic surface is gold.

19. A method according to claim 18 wherein said insulator comprises an alkyl group from about 7 to 20 carbons.

20. A method according to claim 19 wherein said alkyl group comprises a heteroalkyl.

21. A method according to claim 19 wherein said alkyl group comprises a substituted alkyl.

10 22. A method according to claim 12 wherein said AG comprises an alkyl group from about 1 to 6 carbons.

23. A method according to claim 12 or 22 wherein said AG is branched, having the formula:

$$R_3$$
 C
 R_2
 R_5

wherein

5

20

1. 2

l, Fi

*

 R₃ through R₅ are independently selected from the group consisting of hydrogen, alkyl, aryl, alcohol, amine, amido, nitro, ether, ester, ketone, imino, aldehyde, alkoxy, carbonyl, halogen, sulfur containing moiety and phosphorus containing moiety;

- 24. A method according to claim 23 wherein said AG is attached to said attachment linker via a $(CH_2)_n$ group, wherein n is an integer from 0 to 4.
- 25. A method according to claim 23 wherein said AG is attached directly to said attachment linker.
- 26. A method of detecting a target analyte in a sample comprising:
 - a) binding said target analyte to a metallic surface comprising
 - i) an asymmetric monolayer forming species having the formula:

ii) a species having the formula A-MFS-capture binding ligand; and wherein

35

30

30

35

5

10

A is an attachment linker moiety;

MFS is a monolayer forming species; and

AG is an electroconduit forming species; and

- b) binding a solution binding ligand to said target analyte, wherein said solution binding ligand comprises a first portion that will bind to said target analyte and a recruitment linker comprising a first portion comprising at least one ETM; and
- c) detecting the presence of said ETM as an indication of the presence of the target analyte.
- 27. A method according to claim 26 wherein said recruitment linker is directly attached to said target analyte.
 - 28. A method according to claim 26 wherein said recruitment linker is indirectly attached to said target analyte.
 - 29. A method according to claim 26 wherein said ETM is a transition metal complex.
 - 30. A method according to claim 26 wherein said ETM is metallocene.
 - 31. A method according to claim 26 wherein said ETM is ferrocene.
 - 32. A method according to claim 26 wherein said ETM is an organic electron transfer moiety.
 - 33. A method according to claim 26 wherein said capture binding ligand is a nucleic acid.
- 25 34. A method according to claim 26 wherein said capture binding ligand is a protein.
 - 35. A method according to claim 26 wherein A is sulfur.
 - 36. A method according to claim 26 wherein said metallic surface is gold.
 - 37. A method according to claim 26 wherein said MFS is an insulator.
 - 38. A method according to claim 37 wherein said insulator comprises an alkyl group from about 7 to 20 carbons.
 - 39. A method according to claim 38 wherein said alkyl group comprises a heteroalkyl.

10

- 40. A method according to claim 38 wherein said alkyl group comprises a substituted alkyl.
- 41. A method according to claim 26 wherein said AG comprises an alkyl group from about 1 to 6 carbons.
- 42. A method according to claim 26 wherein said AG is branched, having the formula:

wherein

 R_3 through R_5 is selected from the group consisting of hydrogen, alkyl, aryl, alcohol, amine, amido, nitro, ether, ester, ketone, imino, aldehyde, alkoxy, carbonyl, halogen, sulfur containing moiety and phosphorus containing moiety;

- 43. A method according to claim 26 wherein said AG is attached to said attachment linker via a $(CH_2)_n$ group, wherein n is an integer from 0 to 4.
- 44. A method according to claim 26 wherein said AG is attached directly to said attachment linker.